FREIGHT

Optimisation for Multi-modal Freight Transport: The FOR-FREIGHT project case

Presenter: Dr. Orestis Manos, 03/07/2024

Funded by the European Union under Grant Agreement no. 101069731. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Climate, Infrastructure and Environment Executive Agency. Neither the European Union or the granting authority can be held responsible for them.

Multimodal Freight Transportation

Identified obstacles

- Lack of unified management systems via common interfaces (low interoperability)
- Low digitalization/automation of the logistics processes
- Sub-optimal resource planning based on outdated information

Real-world problems generation

FOR-FREIGHT's platform

FOR-FREIGHT's platform

Key advancements

- Establishment of a scalable, sustainable multimodal logistics ecosystem
- Prioritization of interoperability, efficiency, and seamless connectivity.
- Introduce innovative features to enhance logistics operations.
- Optimization of multimodal logistics services for both stakeholders & customers

Involved Technologies

Big Data

Development of a (Big) Data database for handling all the necessary non & real time data of warehouse's status, arrivals predictions, truck/vessel/cargo location & conditions.

Cloud Technology

Back-end Apps and APIs facilitating AI-based decision making, data processing & optimization.

Support flexible and dynamic E2E transport planning.

Simulating optimal situations based on real time data for support DSS to improve truck planning & staying at port/terminal and reduce traffic congestion.

Operational simulations could be exploited for supporting decisionmaking processes.

ΑΙ

DSS on use of resources and end-to-end multimodal transport planning optimization.

Provide real-time door-to-door tracking, forecast of optimal routing and ETA, resource utilization and E2E multimodal transport planning, minimizing the cost function computed based on the defined KPI aspects (resource utilization, time, cost and GHG emissions).

E2E communication & interconnection of the diverse systems participating in the overall operations (port arrival notice, ERP, customs clearance, airflight booking etc.)

Robotics

Build an automated/teleoperated semi-autonomous robotic manipulator for cargo/load picking-up and placing activities.

Blockchain

SC governance based on BC for time reduction in the administrative and operational processes, provided by a Hyperledger Fabric blockchain platform. Enhance transparency, traceability, security and fragmentation of the logistic processes and transactions between actors.

loT

Monitoring of roller cages in real-time, providing detailed information on:

- Moment when the van/truck leaves DHL warehouse loaded with the roller cages towards MDM Depot.
- Arrival of van/truck with roller cages at MDM Depot.
- Moment when roller cages are loaded into the MDM trains.
- Arrival of the roller cages at the final destination.

Greek Use Case example – T&L map

Greek Use Case example - Business flow

Greek Use Case example - E2E route planning for the minimization of CO₂

Problem statement

Which is the best route in terms of minimum CO_2 emissions through the E2E chain starting from A to the desired destination

Acquired CSV by the legacy systems

	А	В	С	D	E	F	G
1	Flight	Cost/kg (euros)	StartTime	TimeOfArrival	CO2(t)	Transits	End_Destination
2	Air_France	70	1/1/2023 6:00	1/1/2023 7:30	30	0	Madrid
3	Swiss	30	1/1/2023 8:00	1/1/2023 18:30	50	1	Madrid
4	Lufthansa	35	1/1/2023 9:00	1/1/2023 14:30	40	1	Madrid
5	Aegean	60	1/1/2023 0:00	1/1/2023 15:30	25	1	Madrid
6	Alitalia	90	1/1/2023 6:00	3/1/2023 18:30	30	0	Rome
7	Swiss	30	1/1/2023 8:00	1/1/2023 14:30	50	1	Rome
8	Lufthansa	35	1/1/2023 9:00	2/1/2023 15:30	40	2	Rome
9	Aegean	60	1/1/2023 0:00	4/1/2023 15:30	25	3	Rome
10	Swiss	30	1/1/2023 6:00	1/1/2023 7:30	30	1	Brussels
11	Lufthanea	25	1/1/2023 8:00	1/1/2023 18:30	50	1	Madrid

Solver Output

Enter the destination you want to go to: Madrid

Choose a criterion for finding the best flight: 1. Cost_per_kg 2. Lowest CO2 Emission 3. Fewer Number of Transits 4. Earliest time of arrival Enter the number corresponding to your choice: 2

Best Flight Accor the Destination M	ding to Lowest CO2 Emission for Madrid:					
ProductID	ABC123					
Flight	Aegean					
Cost_per_kg	60					
StartTime	2023-01-02 12:00:00					
TimeOfArrival	2023-01-02 15:30:00					
C02(t)	25000					
Transits	1					
End_Destination	Madrid					

Route 1 - Option with Minimum CO2 Emissions: 06:0 0 - Predicted CO2 Emissions: 0.84 Kgr Route 1 - Total CO2 Emissions of the End-to-End J ourney: 25000.84 Kgr Route 2 - Option with Minimum CO2 Emissions: 06:0 0 - Predicted CO2 Emissions: 1.82 Kgr Route 2 - Total CO2 Emissions of the End-to-End J ourney: 25001.82 Kgr

Route 1 has lower total CO2 emissions.

Greek Use Case example – Workflow engine : The "Brain" of FOR-FREIGHT platform

